Constraint satisfaction problem	Algebraic approach	Local consistency	Consistent maps

CSP reductions

Miklós Maróti

Bolyai Institute, University of Szeged, Hungary

SSAOS, 2010. September 6.

Local consistency

Consistent maps

GRAPHS AND HOMOMORPHISMS

Definition

- A directed graph is a pair G = (G; E), where G is the set of vertices and E ⊆ G² is the set of edges.
- A relational structure is a tuple $\mathbb{G} = (G; E_1, \dots, E_k)$, where G is the underlying set and $E_i \subseteq G^{n_i}$ is an n_i -ary relation.

Definition

A homomorphism from $\mathbb{G} = (G; E)$ to $\mathbb{H} = (H; F)$ is a map $f: G \to H$ that preserves edges

$$(a,b)\in E \implies (f(a),f(b))\in F.$$

We write $\mathbb{G} \to \mathbb{H}$ if there exists a homomorphism from \mathbb{G} to $\mathbb{H}.$

Local consistency

Consistent maps 00000

CONSTRAINT SATISFACTION PROBLEM (CSP)

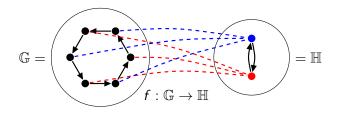
Definition

For a finite relational structure $\mathbb H$ we define

$$\mathrm{CSP}(\mathbb{H}) = \{ \mathbb{G} \mid \mathbb{G} \to \mathbb{H} \}.$$

Example

- CSP() is the class of three-colorable graphs.
- CSP() is the class of bipartite graphs.



Constraint satisfaction problem	Algebraic approach	Local consistency	Consistent map
00000			

The computational complexity of CSP

The membership problem for $\mathrm{CSP}(\mathbb{H})$

- always decidable in nondeterministic polynomial time (NP)
- \bullet is decidable in polynomial time $({\bf P})$ for some ${\mathbb H}$

Dichotomy Conjecture (T. Feder, M. Vardi, 1993)

For every finite structure $\mathbb H$ the membership problem for $\mathrm{CSP}(\mathbb H)$ is in P or NP-complete.

The dichotomy conjecture holds when ${\mathbb H}$

- is an undirected graph (P. Hell, J. Nešetřil, 1990), or
- has at most 3 elements (A. Bulatov, 2006), or
- a smooth directed graph (L. Barto, M. Kozik, T. Niven, 2009).

Open for directed graphs.

Algebraic approach

Local consistency

Consistent maps

$$(\exists x, y, z \in \mathbf{Z}_{5})(x + y = z \land x + x = y \land z = 1)$$

$$(\exists x, y, z \in \mathbf{Z}_{5})((x, y, z) \in F_{1} \land (x, x, y) \in F_{1} \land z \in F_{2}),$$
where $F_{1} = \{(x, y, z) \in \mathbf{Z}_{5}^{3} : x + y = z\}$ and $F_{2} = \{1\}.$

$$(\exists f : \{1, 2, 3\} \rightarrow \mathbf{Z}_{5})((f(1), f(2), f(3)) \in F_{1} \land (f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2}$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2}$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2}$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2}$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2} \land f(3)$$

Algebraic approach

Local consistency

Consistent maps

$$(\exists x, y, z \in \mathbf{Z}_{5})(x + y = z \land x + x = y \land z = 1)$$

$$(\exists x, y, z \in \mathbf{Z}_{5})((x, y, z) \in F_{1} \land (x, x, y) \in F_{1} \land z \in F_{2}),$$
where $F_{1} = \{(x, y, z) \in \mathbf{Z}_{5}^{3} : x + y = z\}$ and $F_{2} = \{1\}.$

$$(\exists f : \{1, 2, 3\} \rightarrow \mathbf{Z}_{5})((f(1), f(2), f(3)) \in F_{1} \land (f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2}))$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2}$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2} \cap F_{2}$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2} \cap F_{2}$$

Algebraic approach

Local consistency

Consistent maps

$$(\exists x, y, z \in \mathbf{Z}_{5})(x + y = z \land x + x = y \land z = 1)$$

$$(\exists x, y, z \in \mathbf{Z}_{5})((x, y, z) \in F_{1} \land (x, x, y) \in F_{1} \land z \in F_{2}),$$
where $F_{1} = \{(x, y, z) \in \mathbf{Z}_{5}^{3} : x + y = z\}$ and $F_{2} = \{1\}.$

$$(\exists f : \{1, 2, 3\} \rightarrow \mathbf{Z}_{5})((f(1), f(2), f(3)) \in F_{1} \land (f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2}))$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{2} \land f(3) \in F_$$

Algebraic approach

Local consistency

Consistent maps

$$(\exists x, y, z \in \mathbf{Z}_{5})(x + y = z \land x + x = y \land z = 1)$$

$$(\exists x, y, z \in \mathbf{Z}_{5})((x, y, z) \in F_{1} \land (x, x, y) \in F_{1} \land z \in F_{2}),$$
where $F_{1} = \{(x, y, z) \in \mathbf{Z}_{5}^{3} : x + y = z\}$ and $F_{2} = \{1\}.$

$$(\exists f : \{1, 2, 3\} \to \mathbf{Z}_{5})((f(1), f(2), f(3)) \in F_{1} \land (f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2}))$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2}$$

$$(f(1), f(2)) \in F_{1} \land f(3) \in F_{2}$$

Algebraic approach

Local consistency

Consistent maps

$$(\exists x, y, z \in \mathbf{Z}_{5})(x + y = z \land x + x = y \land z = 1)$$

$$(\exists x, y, z \in \mathbf{Z}_{5})((x, y, z) \in F_{1} \land (x, x, y) \in F_{1} \land z \in F_{2}),$$
where $F_{1} = \{(x, y, z) \in \mathbf{Z}_{5}^{3} : x + y = z\}$ and $F_{2} = \{1\}.$

$$(\exists f : \{1, 2, 3\} \to \mathbf{Z}_{5})((f(1), f(2), f(3)) \in F_{1} \land (f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2}))$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(1), f(2)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2})$$

$$(f(1), f(2), f(3)) \in F_{1} \land f(3) \in F_{2}, f(3)$$

Local consistency

CSP REDUCTIONS: CORES

Lemma

For every finite relational structure \mathbb{H}_1 there exists \mathbb{H}_2 such that

1 \mathbb{H}_2 is a directed graph (with unary relations),

2 \mathbb{H}_2 is a **core**, *i.e.*, every endomorphism is bijective,

③ every singleton unary relation $\{a\}$ is in \mathbb{H}_2 , and

 $\operatorname{CSP}(\mathbb{H}_1)$ is polynomial time equivalent to $\operatorname{CSP}(\mathbb{H}_2)$.

Proof of (2).

Take a homomorphism $\mathbb{H}_1 \to \mathbb{H}_2$ where \mathbb{H}_2 is a substructure of \mathbb{H}_1 of minimal size. Then \mathbb{H}_2 is a core by minimality. The natural embedding $\mathbb{H}_2 \to \mathbb{H}_1$ is also a homomorphism. Therefore $\mathbb{H}_1 \leftrightarrow \mathbb{H}_2$ and consequently $\mathrm{CSP}(\mathbb{H}_1) = \mathrm{CSP}(\mathbb{H}_2)$.

Constraint	satisfaction	problem

Local consistency

Consistent maps

CSP REDUCTIONS: POLYMORPHISMS

Definition

A **polymorphism** of $\mathbb{H} = (H; F)$ is a homomorphism $p : \mathbb{H}^n \to \mathbb{H}$, that is a *n*-ary map that preserves edges

$$(a_1, b_1), \ldots, (a_n, b_n) \in F \implies (p(a_1, \ldots, a_n), p(b_1, \ldots, b_n)) \in F.$$

 $\operatorname{Pol}(\mathbb{H}) = \{ p \mid p : \mathbb{H}^n \to \mathbb{H} \}$ is the clone of polymorphisms.

Lemma

If $\operatorname{Pol}(\mathbb{H}_1) \subseteq \operatorname{Pol}(\mathbb{H}_2)$, then $\operatorname{CSP}(\mathbb{H}_2)$ is polynomial time reducible to $\operatorname{CSP}(\mathbb{H}_1)$.

Question

Which polymorphisms guarantee that $CSP(\mathbb{H})$ is in **P**?

Constraint	satisfaction	problem

Local consistency

Consistent maps

CSP REDUCTIONS: POLYMORPHISMS

Definition

A **polymorphism** of $\mathbb{H} = (H; F)$ is a homomorphism $p : \mathbb{H}^n \to \mathbb{H}$, that is a *n*-ary map that preserves edges

$$(a_1, b_1), \ldots, (a_n, b_n) \in F \implies (p(a_1, \ldots, a_n), p(b_1, \ldots, b_n)) \in F.$$

 $\operatorname{Pol}(\mathbb{H}) = \{ p \mid p : \mathbb{H}^n \to \mathbb{H} \}$ is the clone of polymorphisms.

Lemma

If $\operatorname{Pol}(\mathbb{H}_1) \subseteq \operatorname{Pol}(\mathbb{H}_2)$, then $\operatorname{CSP}(\mathbb{H}_2)$ is polynomial time reducible to $\operatorname{CSP}(\mathbb{H}_1)$.

Question

Which polymorphisms guarantee that $CSP(\mathbb{H})$ is in **P**?

NICE POLYMORPHISMS

Theorem

 $\mathrm{CSP}(\mathbb{H})$ is in P if $\mathrm{Pol}(\mathbb{H})$ contains one of the following:

• a semilattice operation (Jevons et. al.)

 $x \wedge y \approx y \wedge x, \quad x \wedge (y \wedge z) \approx (x \wedge y) \wedge z, \quad x \wedge x \approx x.$

• a near-unanimity operation

 $p(y, x, \ldots, x) \approx p(x, y, x, \ldots, x) \approx \cdots \approx p(x, \ldots, x, y) \approx x,$

- a totally symmetric idempotent operation (Dalmau, Pearson),
- a Maltsev operation (Bulatov, Dalmau)

 $p(x, y, y) \approx p(y, y, x) \approx x,$

• Generalized majority-minority operation (Dalmau).

Local consistency

NICE POLYMORPHISMS CONT.

Theorem

 $\mathrm{CSP}(\mathbb{H})$ is in **P** if $\mathrm{Pol}(\mathbb{H})$ contains one of the following:

• *Edge operations* (Idziak, Marković, McKenzie, Valeriote, Willard)

$$p(y, y, x, x, \dots, x) \approx x,$$

$$p(x, y, y, x, \dots, x) \approx x,$$

$$p(x, x, x, y, \dots, x) \approx x,$$

.

$$p(x, x, x, x, \ldots, y) \approx x.$$

.

- Jónsson operations (Barto, Kozik),
- Willard operations (Barto, Kozik).

WEAK NEAR-UNANIMITY

Theorem (R. McKenzie, M. Maróti, 2008)

For a locally finite variety \mathcal{V} the followings are equivalent:

- $\mathcal V$ omits type 1 (tame congruence theory),
- $\mathcal V$ has a Taylor term,
- V has a weak near-unanimity operation:

$$p(y, x, \ldots, x) \approx \cdots \approx p(x, \ldots, x, y)$$
 and $p(x, \ldots, x) \approx x$.

Theorem (B. Larose, L. Zádori, 2006)

If \mathbb{H} is a core and does not have a Taylor (or weak near-unanimity) polymorphism, then $CSP(\mathbb{H})$ is **NP**-complete.

Algebraic dichotomy conjecture

If $\mathbb H$ is a core and has a weak near-unanimity polymorphism, then ${\rm CSP}(\mathbb H)$ is in $\boldsymbol P.$

APPLICATIONS TO UNIVERSAL ALGEBRA

Theorem (P. Markovic, R. McKenize, M. Siggers, 2008)

A locally finite variety ${\cal V}$ omits type 1 iff it has a 4-ary term t satisfying the equations

 $t(x, y, z, x) \approx t(y, z, x, z)$ and $t(x, x, x, x) \approx x$.

Proof.

Consider the directed graph \mathbb{G} defined on the 3-generated free algebra $\mathbf{F}_3(\mathcal{V})$ whose edges are generated by (x, y), (y, z), (z, x), (x, z). It is smooth, and its core must be a loop. That loop edge is t((x, y), (y, z), (z, x), (x, z)).

Constraint satisfaction problem	Algebraic approach	Local consistency ●○○	Consistent maps 00000
STRATECIES			

Let **H** be an idempotent algebra and G be a set of variables. A collection

$$\mathcal{R} = \{ \mathbf{R}_{ij} \leq \mathbf{H}^2 : i, j \in G \}$$

of binary constraint relations is a binary strategy, if

•
$$R_{ij}=R_{ji}^{-1}$$
, and

•
$$R_{ii} \subseteq \{ (a, a) : a \in H \}.$$

A map $f : G \to H$ is a **solution** if $(f(i), f(j)) \in R_{ij}$ for all $i, j \in G$.

Lemma

Every CSP problem is polynomial time equivalent to

 $\operatorname{CSP}(\operatorname{S}(\operatorname{H}^2)) = \{ \text{all binary strategies of } \operatorname{H} \text{ that have a solution} \}.$

Local consistency

Consistent maps

LOCAL CONSISTENCY ALGORITHM

Definition

The binary strategy \mathcal{R} is (2,3)-consistent, if

$$R_{ik} \subseteq R_{ij} \circ R_{jk}$$
 for all $i, j, k \in G$.

Definition

The (2,3)-consistency algorithm turns a binary strategy \mathcal{R} into a (2,3)-consistent binary strategy without loosing solutions:

$$R'_{ik} = R_{ik} \cap (R_{ij} \circ R_{jk}).$$

- runs in polynomial time (in the size of \mathcal{R}),
- the output is independent of the choices made,
- if the output strategy is empty, then $\mathcal{R} \not\in \mathrm{CSP}(\mathrm{S}(\mathsf{H}^2)).$

Constraint	satisfaction	problem	Į
			C

Local consistency

Bounded width

Definition

An algebra **H** has width (2,3) if every nonempty (2,3)-consistent binary strategy of **H** has a solution.

Theorem (A. Bulatov, A. Krokhin, P. Jeavons, 2000)

If H has width (2,3) (or bounded width), then

- $\bullet \ {\rm CSP}({\rm S}(H^2))$ is in P
- HSP(H) omits types 1 and 2, i.e., H has Willard terms.

Theorem (L. Barto, M. Kozik, 2009)

If the variety generated by ${\bf H}$ omits types ${\bf 1}$ and ${\bf 2},$ then ${\bf H}$ has bounded width.

Constraint satisfaction problem	Algebraic approach	Local consistency	Consistent maps
	00000	000	●○○○○
CONSIGTENT MAD	C		

Let $\mathcal{R} = \{ \mathbf{R}_{ij} \leq \mathbf{H}^2 \mid i, j \in G \}$ be a binary strategy. A collection of maps

$$\mathcal{P} = \{ p_i : H \to H \mid i \in G \}$$

$$(a,b)\in \mathsf{R}_{ij}\implies (p_i(a),p_j(b))\in \mathsf{R}_{ij}.$$

- The identity maps $p_i(x) = x$ are always consistent.
- If f is a solution of \mathcal{R} , then the constant maps $p_i(x) = f(i)$ are consistent.
- Consistent maps can be composed pointwise.
- Consistent maps map solutions to solutions.

Constraint satisfaction problem	Algebraic approach 00000	Local consistency 000	Consistent maps
CONSIGTENT MAD	2		

Let $\mathcal{R} = \{ \mathbf{R}_{ij} \leq \mathbf{H}^2 \mid i, j \in G \}$ be a binary strategy. A collection of maps

$$\mathcal{P} = \{ p_i : H \to H \mid i \in G \}$$

$$(a,b)\in \mathsf{R}_{ij}\implies (p_i(a),p_j(b))\in \mathsf{R}_{ij}.$$

- The identity maps $p_i(x) = x$ are always consistent.
- If f is a solution of \mathcal{R} , then the constant maps $p_i(x) = f(i)$ are consistent.
- Consistent maps can be composed pointwise.
- Consistent maps map solutions to solutions.

Constraint satisfaction problem	Algebraic approach 00000	Local consistency 000	Consistent maps
CONSIGTENT MAD	2		

Let $\mathcal{R} = \{ \mathbf{R}_{ij} \leq \mathbf{H}^2 \mid i, j \in G \}$ be a binary strategy. A collection of maps

$$\mathcal{P} = \{ p_i : H \to H \mid i \in G \}$$

$$(a,b)\in \mathbf{R}_{ij}\implies (p_i(a),p_j(b))\in \mathbf{R}_{ij}.$$

- The identity maps $p_i(x) = x$ are always consistent.
- If f is a solution of \mathcal{R} , then the constant maps $p_i(x) = f(i)$ are consistent.
- Consistent maps can be composed pointwise.
- Consistent maps map solutions to solutions.

Constraint satisfaction problem	Algebraic approach 00000	Local consistency 000	Consistent maps
CONSIGTENT MAD	2		

Let $\mathcal{R} = \{ \mathbf{R}_{ij} \leq \mathbf{H}^2 \mid i, j \in G \}$ be a binary strategy. A collection of maps

$$\mathcal{P} = \{ p_i : H \to H \mid i \in G \}$$

$$(a,b)\in \mathbf{R}_{ij}\implies (p_i(a),p_j(b))\in \mathbf{R}_{ij}.$$

- The identity maps $p_i(x) = x$ are always consistent.
- If f is a solution of \mathcal{R} , then the constant maps $p_i(x) = f(i)$ are consistent.
- Consistent maps can be composed pointwise.
- Consistent maps map solutions to solutions.

Constraint satisfaction problem	Algebraic approach 00000	Local consistency 000	Consistent maps
CONSIGTENT MAD	2		

Let $\mathcal{R} = \{ \mathbf{R}_{ij} \leq \mathbf{H}^2 \mid i, j \in G \}$ be a binary strategy. A collection of maps

$$\mathcal{P} = \{ p_i : H \to H \mid i \in G \}$$

$$(a,b)\in \mathbf{R}_{ij}\implies (p_i(a),p_j(b))\in \mathbf{R}_{ij}.$$

- The identity maps $p_i(x) = x$ are always consistent.
- If f is a solution of \mathcal{R} , then the constant maps $p_i(x) = f(i)$ are consistent.
- Consistent maps can be composed pointwise.
- Consistent maps map solutions to solutions.

Algebraic approach

Local consistency

Consistent maps

FINDING CONSISTENT MAPS

Consistent maps are solutions of a larger $\ensuremath{\mathrm{CSP}}$ instance:

Definition

Let $\mathcal{R} = \{ \mathbf{R}_{ij} \leq \mathbf{H}^2 \mid i, j \in G \}$ be a binary strategy. A collection of maps $\{ p_i \mid i \in G \}$ is consistent if and only if the binary strategy \mathcal{R}' with

• variable set $G' = G \times H$ and

relations

$${\sf R}'_{(ia)(jb)} = egin{cases} {\sf R}_{ij} & ext{if } (a,b) \in {\sf R}_{ij}, \ {\sf H} imes {\sf H} & ext{otherwise} \end{cases}$$

has

$$f'((i,a)) = p_i(a)$$

as a solution.

FINDING CONSISTENT MAPS CONT.

Lemma

For any binary term t(x, y) and a solution f of the binary strategy $\mathcal{R} = \{ \mathbf{R}_{ij} \leq \mathbf{H}^2 \mid i, j \in G \}$ the maps

$$\{p_i(x) = t(f(i), x) \mid i \in G\}$$

are consistent.

- We can assume that t(x, t(x, y)) = t(x, y) in which case the consistent maps become idempotent p_i(p_i(y)) = p_i(y).
- We can add non-unary constraints to \mathcal{R}' such that p_i become polynomials.
- We can limit the domain of the variable $(i, a) \in G'$ to

$$t(a,H) = \{ t(a,y) \mid y \in H \}.$$

• We have to use multisorted strategies.

- We decompose CSP problems into easier problems.
- We assume that "smaller" strategies are in **P**.
- If |t(a, H)| < |H| for all a ∈ H, then we are in a "smaller" case (e.g. algebras with a non-chain semilattice factor)
- \bullet So we can find a consistent set ${\mathcal P}$ of maps for ${\mathcal R}.$
- *P* maps solutions to solutions, so we can find a solution of *R* in a smaller case provided that |{ p_i(x) : x ∈ H }| < |H|.

- We step outside of the variety (we use an idempotent image of an algebra), but the linear identities are preserved.

- We have to use multisorted strategies.
- $\bullet~{\rm We}$ decompose ${\rm CSP}$ problems into easier problems.
- We assume that "smaller" strategies are in **P**.
- If |t(a, H)| < |H| for all a ∈ H, then we are in a "smaller" case (e.g. algebras with a non-chain semilattice factor)
- So we can find a consistent set \mathcal{P} of maps for \mathcal{R} .
- *P* maps solutions to solutions, so we can find a solution of *R* in a smaller case provided that |{ p_i(x) : x ∈ H }| < |H|.

- We step outside of the variety (we use an idempotent image of an algebra), but the linear identities are preserved.

- We have to use multisorted strategies.
- $\bullet~{\rm We}$ decompose ${\rm CSP}$ problems into easier problems.
- We assume that "smaller" strategies are in **P**.
- If |t(a, H)| < |H| for all a ∈ H, then we are in a "smaller" case (e.g. algebras with a non-chain semilattice factor)
- So we can find a consistent set \mathcal{P} of maps for \mathcal{R} .
- *P* maps solutions to solutions, so we can find a solution of *R* in a smaller case provided that |{ p_i(x) : x ∈ H }| < |H|.

- We step outside of the variety (we use an idempotent image of an algebra), but the linear identities are preserved.

- We have to use multisorted strategies.
- $\bullet~{\rm We}$ decompose ${\rm CSP}$ problems into easier problems.
- We assume that "smaller" strategies are in **P**.
- If |t(a, H)| < |H| for all a ∈ H, then we are in a "smaller" case (e.g. algebras with a non-chain semilattice factor)
- So we can find a consistent set \mathcal{P} of maps for \mathcal{R} .
- *P* maps solutions to solutions, so we can find a solution of *R* in a smaller case provided that |{ *p_i(x)* : *x* ∈ *H*}| < |*H*|.
- We step outside of the variety (we use an idempotent image of an algebra), but the linear identities are preserved.

- We have to use multisorted strategies.
- $\bullet~{\rm We}$ decompose ${\rm CSP}$ problems into easier problems.
- We assume that "smaller" strategies are in **P**.
- If |t(a, H)| < |H| for all a ∈ H, then we are in a "smaller" case (e.g. algebras with a non-chain semilattice factor)
- \bullet So we can find a consistent set ${\cal P}$ of maps for ${\cal R}.$
- *P* maps solutions to solutions, so we can find a solution of *R* in a smaller case provided that |{ p_i(x) : x ∈ H }| < |H|.
- We step outside of the variety (we use an idempotent image of an algebra), but the linear identities are preserved.

- We have to use multisorted strategies.
- $\bullet~{\rm We}$ decompose ${\rm CSP}$ problems into easier problems.
- We assume that "smaller" strategies are in **P**.
- If |t(a, H)| < |H| for all a ∈ H, then we are in a "smaller" case (e.g. algebras with a non-chain semilattice factor)
- So we can find a consistent set ${\mathcal P}$ of maps for ${\mathcal R}.$
- *P* maps solutions to solutions, so we can find a solution of *R* in a smaller case provided that |{ *p_i(x)* : *x* ∈ *H*}| < |*H*|.
- We step outside of the variety (we use an idempotent image of an algebra), but the linear identities are preserved.

- We have to use multisorted strategies.
- $\bullet~{\rm We}$ decompose ${\rm CSP}$ problems into easier problems.
- We assume that "smaller" strategies are in **P**.
- If |t(a, H)| < |H| for all a ∈ H, then we are in a "smaller" case (e.g. algebras with a non-chain semilattice factor)
- \bullet So we can find a consistent set ${\cal P}$ of maps for ${\cal R}.$
- *P* maps solutions to solutions, so we can find a solution of *R* in a smaller case provided that |{ *p_i(x)* : *x* ∈ *H*}| < |*H*|.
- We step outside of the variety (we use an idempotent image of an algebra), but the linear identities are preserved.

Constraint	satisfaction	problem	

Local consistency

RESULTS

Theorem

Let **H** be an algebra and t be a binary term such that for each $a \in H$ the map $t_a(x) = t(a, x)$ is idempotent and not surjective. Let B be the set of elements $b \in H$ such that the map $x \mapsto t(x, b)$ is a permutation. If B generates a proper subuniverse of **H**, then **H** can be eliminated from CSP problems.

Applications:

- three element structures,
- tree over Maltsev,
- conservative algebras (partially).